Transcriptional activation of secondary wall biosynthesis by rice and maize NAC and MYB transcription factors.

نویسندگان

  • Ruiqin Zhong
  • Chanhui Lee
  • Ryan L McCarthy
  • Cromwell K Reeves
  • Evan G Jones
  • Zheng-Hua Ye
چکیده

The bulk of grass biomass potentially useful for cellulose-based biofuel production is the remains of secondary wall-containing sclerenchymatous fibers. Hence, it is important to uncover the molecular mechanisms underlying the regulation of secondary wall thickening in grass species. So far, little is known about the transcriptional regulatory switches responsible for the activation of the secondary wall biosynthetic program in grass species. Here, we report the roles of a group of rice and maize NAC and MYB transcription factors in the regulation of secondary wall biosynthesis. The rice and maize secondary wall-associated NACs (namely OsSWNs and ZmSWNs) were able to complement the Arabidopsis snd1 nst1 double mutant defective in secondary wall thickening. When overexpressed in Arabidopsis, OsSWNs and ZmSWNs were sufficient to activate a number of secondary wall-associated transcription factors and secondary wall biosynthetic genes, and concomitantly result in the ectopic deposition of cellulose, xylan and lignin. It was also found that the rice and maize MYB transcription factors, OsMYB46 and ZmMYB46, are functional orthologs of Arabidopsis MYB46/MYB83 and, when overexpressed in Arabidopsis, they were able to activate the entire secondary wall biosynthetic program. Furthermore, the promoters of OsMYB46 and ZmMYB46 contain secondary wall NAC-binding elements (SNBEs), which can be bound and activated by OsSWNs and ZmSWNs. Together, our results indicate that the rice and maize SWNs and MYB46 are master transcriptional activators of the secondary wall biosynthetic program and that OsSWNs and ZmSWNs activate their direct target genes through binding to the SNBE sites.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transcriptional Regulation of Grass Secondary Cell Wall Biosynthesis: Playing Catch-Up with Arabidopsis thaliana

Secondary cell wall synthesis occurs in specialized cell types following completion of cell enlargement. By virtue of mechanical strength provided by a wall thickened with cellulose, hemicelluloses, and lignin, these cells can function as water-conducting vessels and provide structural support. Several transcription factor families regulate genes encoding wall synthesis enzymes. Certain NAC and...

متن کامل

NAC-MYB-based transcriptional regulation of secondary cell wall biosynthesis in land plants

Plant cells biosynthesize primary cell walls (PCW) in all cells and produce secondary cell walls (SCWs) in specific cell types that conduct water and/or provide mechanical support, such as xylem vessels and fibers. The characteristic mechanical stiffness, chemical recalcitrance, and hydrophobic nature of SCWs result from the organization of SCW-specific biopolymers, i.e., highly ordered cellulo...

متن کامل

Functional Characterization of NAC and MYB Transcription Factors Involved in Regulation of Biomass Production in Switchgrass (Panicum virgatum)

Switchgrass is a promising biofuel feedstock due to its high biomass production and low agronomic input requirements. Because the bulk of switchgrass biomass used for biofuel production is lignocellulosic secondary walls, studies on secondary wall biosynthesis and its transcriptional regulation are imperative for designing strategies for genetic improvement of biomass production in switchgrass....

متن کامل

Identification of transcription factors involved in rice secondary cell wall formation.

Using co-expression network analysis, we identified 123 transcription factors (TFs) as candidate secondary cell wall regulators in rice. To validate whether these TFs are associated with secondary cell wall formation, six TF genes belonging to the MYB, NAC or homeodomain-containing TF families were overexpressed or downregulated in rice. With the exception of OsMYB58/63-RNAi plants, all transge...

متن کامل

Chimeric repressor of PtSND2 severely affects wood formation in transgenic Populus.

NAC domain transcription factors are important regulators that activate the secondary wall biosynthesis in wood formation. In this work, we investigated the possible functions of an NAC family member SECONDARY WALL-ASSOCIATED NAC DOMAIN PROTEIN2 (PtSND2) using chimeric repressor silencing technology. Reverse transcription-polymerase chain reaction, subcellular localization and transcriptional a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Plant & cell physiology

دوره 52 10  شماره 

صفحات  -

تاریخ انتشار 2011